快3app网址_用python的matplotlib和numpy库绘制股票K线均线的整合效果(含从网络接口爬取数据和验证交易策略代码)

  • 时间:
  • 浏览:1
  • 来源:熊猫辅助网_提供洋葱娱乐网技术_梅花辅助网资讯

    人及最近在尝试着发表“以股票案例入门Python编程语言”系列的文章,在哪些地方地方文章里,将用Python工具绘制各种股票指标,在讲述各股票指标的含义以及计算法律方法的共同,验证基于各种指标的交易策略,本文是第一篇,通过K线和均线案例讲述Numpy,Maplotlib等相关库的用法,还会 还用代码案例来验证买卖的交易策略。在本系列的后面 文章中,将陆续通过python绘制成交量、KDJ、MACD、RSI和OBV等指标,还会 还会用Python编写针对哪些地方地方指标的交易策略,敬请关注。

1 K线整合均线的案例

    均线也叫移动平均线(Moving Average,简称MA),是指某段时间内的平均股价(或指数)连成的曲线,通过它亲戚亲戚大伙儿能清晰地看到股价的历史波动,从而能进一步预测未来价格的发展趋势。

    均线一般分短期、中期和长期这三类。

    1 通常把四天和10天移动平均线称为短期均线,一般供短线投资者参照。

    2一般把20天、100天和100天移动平均线作为中期均线,一般供中线投资者参考。

    3 一般120天和2100天(甚至更长)移动平均线称为长期均线,一般供长线投资者参考。

    不过在实践中,亲戚亲戚大伙儿一般都要综合地观察短期中期和长期均线,从中能分易挥发市场的多空趋势。比如,肯能某股价格的三类均线均上涨,且短期中期长期均线是从上到下排列,则说明该股价格趋势向上;反之肯能并列下跌,且长期中期短期均线从上到下排列,则说明股价趋势向下。

    讲完概念了,亲戚亲戚大伙儿通过rolling法律方法绘制均线。    

1	#!/usr/bin/env python
2	#coding=utf-8
3	import pandas as pd
4	import matplotlib.pyplot as plt 
5	from mpl_finance import candlestick_ochl  
6	#从文件里得到数据
7	df = pd.read_csv('D:/stockData/ch6/1000895.csv',encoding='gbk')
8	#设置图的位置
9	fig = plt.figure()
10	ax = fig.subplot(111)
11	#调用法律方法,绘制K线图 
12	candlestick_ochl(opens=df["Open"].values, closes=df["Close"].values, highs=df["High"].values, lows=df["Low"].values,width=0.75, colorup='red', colordown='green')
13	df['Close'].rolling(window=3).mean().plot(color="red",label='四天均线')
14	df['Close'].rolling(window=5).mean().plot(color="blue",label='四天均线')
15	df['Close'].rolling(window=10).mean().plot(color="green",label='10天均线')
16	plt.legend(loc='best') #绘制图例
17	#设置x轴的标签 
18	plt.xticks(range(len(df.index.values)),df.index.values,rotation=100 ) 
19	ax.grid(True) #带网格线
20	plt.title("1000895张江高科的K线图")
21	plt.show()

    从第13行到第15行里,通过rolling法律方法,根据每天的收盘价,计算了四天、四天和10天均线,并为每种均线设置了图例,在第16行里,通过legend法律方法设置了图例的位置。上述代码的运行效果如下图所示,从中亲戚亲戚大伙儿不仅能看到这段时间内的K线图,还能看到3根均线。    

    

2 K线整合均线的改进版案例

    在本例中,亲戚亲戚大伙儿将做如下两点改进,其中请亲戚亲戚大伙儿着重观察操作坐标轴的ax对象。  

    第一,为了更灵活地得到股市数据,这里是根据现在始于时间和现在始于时间,先是调用get_data_yahoo接口,从yahoo的接口里获取股票数据,共同为了留一份数据,什么都 会把从接口爬取到的数据保存到本地csv文件,做完还会再绘制图形。

    第二,在还会的案例中,x轴的刻度是每个交易日的日期,但肯能显示的时间范围过长,那么时间刻度就会太密集,影响美观效果,什么都 这里将只显示主刻度。改进后的代码如下所示。

1	#!/usr/bin/env python
2	#coding=utf-8
3	import pandas_datareader
4	import pandas as pd
5	import matplotlib.pyplot as plt 
6	from mpl_finance import candlestick2_ochl
7	from matplotlib.ticker import MultipleLocator 
8	#根据指定代码和时间范围,获取股票数据
9	code='1000895.ss'
10	stock = pandas_datareader.get_data_yahoo(code,'2019-01-01','2019-03-31')
11	#删除最后一行,肯能get_data_yahoo会多取一天数据
12	stock.drop(stock.index[len(stock)-1],inplace=True)
13	#保所处本地
14	stock.to_csv('D:\\stockData\ch7\\1000895.csv')
15	df = pd.read_csv('D:/stockData/ch7/1000895.csv',encoding='gbk',index_col=0)
16	#设置窗口大小
17	fig, ax = plt.subplots(figsize=(10, 8))
18	xmajorLocator   = MultipleLocator(5) #将x轴主刻度设置为5的倍数
19	ax.xaxis.set_major_locator(xmajorLocator)
20	#调用法律方法,绘制K线图 
21	candlestick2_ochl(ax = ax, 
22	opens=df["Open"].values,closes=df["Close"].values, highs=df["High"].values, lows=df["Low"].values,width=0.75, colorup='red', colordown='green')
23	#如下是绘制3种均线
24	df['Close'].rolling(window=3).mean().plot(color="red",label='四天均线')
25	df['Close'].rolling(window=5).mean().plot(color="blue",label='四天均线')
26	df['Close'].rolling(window=10).mean().plot(color="green",label='10天均线')
27	plt.legend(loc='best') #绘制图例
28	ax.grid(True) #带网格线
29	plt.title("1000895张江高科的K线图")
100	plt.rcParams['font.sans-serif']=['SimHei']
31	plt.setp(plt.gca().get_xticklabels(), rotation=100) 
32	plt.show()

    相比还会代码,这段代码有5个改进点。

    第一,从第9行到第14行里,亲戚亲戚大伙儿通过第五章分析过的get_data_yahoo法律方法,传入股票代码、现在始于和现在始于时间这另一个多 参数,从yahoo接口里获得股票交易的数据。

    请注意该法律方法返回的数据会比传入的现在始于时间多一天,比如亲戚亲戚大伙儿传入的现在始于时间是2019-03-31,但它会返回后一天(即2019-04-01)的数据,什么都 得通过第12行的drop法律方法,删除stock对象(该对象类型是dataframe)最后一行的数据。删除的还会是通过stock.index[len(stock)-1]指定删除长度减1的索引值,肯能索引值是从0现在始于,还会 都要指定inplace=True,还会 一句话,删除的结果无法更新到stock这一dataframe里。

    第二,在第17行里,通过figsize法律方法设置了窗口的大小尺寸。

    第三,通过第18行和第19行的代码,设置了主刻度是5的倍数。好的反义词设置成5的倍数,是肯能一般一周的交易日是四天。但这里那么简单地把主刻度设置成每周一,肯能这一周一有肯能是股市休市的法定假日。

    第四,肯能不没得x轴上设置每天的日期,什么都 这里不不再调用plt.xticks法律方法,还会 得调用如第31行所示的代码,设置x轴刻度的旋转强度,还会 x轴展示的时间依然有肯能会重叠。

    这段代码的运行效果如下图所示,从中亲戚亲戚大伙儿能看到改进后的效果,还会 ,肯能本次展示的股票时间段变长了(是5个月),什么都 相比drawKAndMA.py案例,均线的效果更为明显,尤其是三日均线,更是几乎贯穿于整个交易日范围。

    

3 葛兰碧均线八大买卖法则

   在均线实践理论中,投资专家葛兰碧创造的八项买卖法则可谓经典,具体的细节如下图所示。

    

    1 移动平均线从下降逐渐转为平水平,且有超后面 抬头迹象,而股价从均线下方突破时,为买进信号,如上图中的A点。

    2 股价于移动平均线之上运行时下跌,但未跌破均线,此时股价再次上扬,此时为买入信号,如图中的C点。

    3 股价所处均线上运行,下跌时破均线,但均线呈上升趋势,不久股价回到均线之上时,为买进信号,如图中的B点。

    4 股价在均线下方运行时大跌,远离均线时向均线靠近,此时为买进时机,如图中的D点。

    5 均线的上升趋势逐渐变平,且有向下迹象,而股价从均线后面 向下穿均线,为卖出信号,如图中的E点。

    6 股价向上穿过均线,不过均线依然保持下跌趋势,此后股价又下跌回均线下方,为卖出信号,如图中的F点。

    7 股价运行在均线下方,突然总出 上涨,但未过均线就再次下跌,此为卖出点,如图中的G点。

    8 股价在均线的后面 运行,连续上涨且继续远离均线,这一趋势说明随还会突然总出 获利回吐的卖盘打压,此时是卖出的时机,如前图中的H点。

4 通过DataFrame对象验证均线的买点策略

    根据上述八大买卖原则,亲戚亲戚大伙儿在张江高科2019年1月到3月的交易数据内,用pandas库里的dataframe等对象,根据5日均线计算参考买点,代码如下所示。    

1	#!/usr/bin/env python
2	#coding=utf-8
3	import pandas as pd
4	#从文件里得到数据
5	df = pd.read_csv('D:/stockData/ch7/1000895.csv',encoding='gbk')
6	maIntervalList = [3,5,10]
7	#我随便说说在后文里只用到了5日均线,但这里演示设置3种均线
8	for maInterval in maIntervalList:
9	    df['MA_' + str(maInterval)] = df['Close'].rolling(window=maInterval).mean()
10	cnt=0    
11	while cnt<=len(df)-1:
12	    try:
13	        #规则1,收盘价连续四天上扬
14	        if df.iloc[cnt]['Close']<df.iloc[cnt+1]['Close'] and df.iloc[cnt+1]['Close']<df.iloc[cnt+2]['Close']:
15	            #规则2,5日均线连续四天上扬
16	            if df.iloc[cnt]['MA_5']<df.iloc[cnt+1]['MA_5'] and df.iloc[cnt+1]['MA_5']<df.iloc[cnt+2]['MA_5']:
17	                #规则3,第四天,收盘价上穿5日均线
18	                if df.iloc[cnt+1]['MA_5']>df.iloc[cnt]['Close'] and df.iloc[cnt+2]['MA_5']<df.iloc[cnt+1]['Close']:     
19	                    print("Buy Point on:" + df.iloc[cnt]['Date'])
20	    except: #有几天是没5日均线的,什么都

用except正确处理异常
21	        pass:                
22	    cnt=cnt+1

    我随便说说在计算参考买点时,只用到了5日均价,但在第8行和第9行的for循环里,亲戚亲戚大伙儿通过rolling法律方法,还是计算了3日、5日和10日的均价,并把计算后的结果记录到当前行的MA_3、MA_5和MA_10这三列中,曾经做的目的是为了演示动态创建列的做法。

    在第11行到第22行的while循环里,亲戚亲戚大伙儿依次遍历了每天的交易数据,并在第14行,第16行和第18行里,通过另一个多多 if一句话,设置了5个规则。肯能在前几天是那么5日均价了,且在遍历最后2天交易数据时,在执行诸如df.iloc[cnt+2]['Close']的一句话中会突然总出 索引越界,什么都 在while循环里亲戚亲戚大伙儿用到了try…except异常正确处理一句话。

    运行上述代码,亲戚亲戚大伙儿能看到的结果是:Buy Point on:2019-03-08,结合上图,亲戚亲戚大伙儿能看到3月8日还会的交易日里,股价有一定程度的上涨,什么都 能证实基于均线的“买”原则,但影响股价的因素太多,亲戚亲戚大伙儿应全面分析,切勿在实战中只用这原则来买卖股票。

5 通过DataFrame验证均线的卖点策略

    同样地,根据5日均线计算参考买点,在如下案例中,亲戚亲戚大伙儿计算了张江高科2019年1月到3月内的卖点。    

1	#!/usr/bin/env python
2	#coding=utf-8
3	import pandas as pd
4	#从文件里得到数据
5	df = pd.read_csv('D:/stockData/ch7/1000895.csv',encoding='gbk')
6	maIntervalList = [3,5,10]
7	#我随便说说在后文里只用到了5日均线,但这里演示设置3种均线
8	for maInterval in maIntervalList:
9	    df['MA_' + str(maInterval)] = df['Close'].rolling(window=maInterval).mean()
10	cnt=0    
11	while cnt<=len(df)-1:
12	    try:
13	        #规则1,收盘价连续四天下跌
14	        if df.iloc[cnt]['Close']>df.iloc[cnt+1]['Close'] and df.iloc[cnt+1]['Close']>df.iloc[cnt+2]['Close']:
15	            #规则2,5日均线连续四天下跌
16	            if df.iloc[cnt]['MA_5']>df.iloc[cnt+1]['MA_5'] and df.iloc[cnt+1]['MA_5']>df.iloc[cnt+2]['MA_5']:
17	                #规则3,第四天,收盘价下穿5日均线
18	                if df.iloc[cnt+1]['MA_5']<df.iloc[cnt]['Close'] and df.iloc[cnt+2]['MA_5']>df.iloc[cnt+1]['Close']:     
19	                    print("Sell Point on:" + df.iloc[cnt]['Date'])
20	    except: #有几天是没5日均线的,什么都

用except正确处理异常
21	        pass                
22	    cnt=cnt+1

    运行后,亲戚亲戚大伙儿能得到另一个多多 卖点:2019-01-23和2019-01-23,这同样能在上图描述的K线图里得到验证。

6 求推荐,后文预告与版权说明

    在本系列的后面 文章中,将陆续通过python绘制成交量、KDJ、MACD、RSI和OBV等指标,还会 还会用Python编写针对哪些地方地方指标的交易策略,敬请关注。

    本文用了我将近5个小时,肯能亲戚亲戚大伙儿感觉好,请帮忙推荐下。

    关于转载有如下的说明。

    1 本文文字和代码均属原创,可转载,但谢绝用于商业用户。

    2 转载时请用链接的法律方法,给出原文出处,共同写明原作者是hsm_computer。

    3 在转载时,请原文转载 ,如要在转载修改本文,请还会告知,谢绝在转载时通过修改本文达到有益于转载者的目的。

猜你喜欢

分分5分快三APP下载_乳腺癌与精神压力关系大

   美联国际新闻社近日报道称,美国研究人员发现深度图精分分5分快三APP下载神压分分5分快三APP下载力会增加妇女分分5分快三APP下载患子宫癌和乳腺癌的风险。研究人员通过对

2019-10-14

幸运pk10网页版_【聚美】睡好美容觉8条基本要领 你掌握了几条?

  导语:千万别以为美容觉是件简单易行的事情,若要达到美容功效,你还真要在幸运pk10网页版睡前花点小心思才行!8条美容觉睡眠基本要领,你掌握了有十几个 ?掌握的不多,美容觉

2019-10-14

大发快3回血_2018年6月移动视频市场:爱奇艺继续领跑视频用户活跃度 短视频崛起行业竞争格局生变

6月QuestMobile数据出炉,爱奇艺在大发快3回血用户规模与用户粘性大发快3回血等指标上继续保持移动视频行业第一的位置。短视频应用出現反超腾讯视频、优酷的趋势,腾讯视频的

2019-10-14

腾讯3分彩平台官网_China Daily Website

Copy腾讯3分彩平台官网R腾讯3分彩平台官网ight1995- .Allrightsr腾讯3分彩平台官网eserved.Thecontent(inclu

2019-10-14